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Get your hands dirty

• IC7

• OC7

• OC41

• IC76

• IC92

• IC118

• IC131

• OC88

Wishful thinking

• OC15

• IC42

• OC32

• IC83

• Zeitz 1.3.14

• IC143

Find a penultimate step
• IC18

• IC33

• IC89

• IC72

• IC122

• IC151
Formulate intermediate goals
• IC7

• IC8

• IC53

• IC54

• IC76

• IC99

• IC121

• OC78

• IC139

• IC145

Tactics and techniques

Extremal principle
• OC41

• OC78

• OC88
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Find and exploit symmetries

• IC8

• IC18

• IC33

• IC53

• IC54

• IC89
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• IC99

• IC121

• IC139

• IC145

Invariance principle

• IC7

• IC37
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• IC92
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• IC122
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• IC151

Pigeon hole principle

• IC33
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• IC83

Counting in two different ways

• None

Tools and mathematical con-
tent

Graph theory

• IC42

• OC32

Complex numbers

• IC53

Generating functions

• IC54

• OC41

• IC99

Factor tactic

• IC83

• IC72

Arithmetic and geometric sequences
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• IC76

• Zeitz 1.3.14
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Pascal’s triangle and the binomial the-
orem

• IC7

• IC54

Partitions and bijections

• IC18

• IC131

Principle of inclusion-exclusion

• None

Recurrence relations

• OC7

• IC76

• IC118

• OC78

Primes and divisibility

• OC15

• IC92

• IC121

• OC78

• IC131

Congruence

• IC121

• IC122

• IC131

Diophantine equations

• IC99

• OC88

Geometry

• IC8

• IC16

• IC33

• IC53

• IC139

• IC143

• IC145

• IC151

Overall, I believe my portfolio has a good diversity, I solved four Putnam problems, and several
other problems that I found as hard or even harder than the Putnam ones such as OC7, IC42,
IC121, IC118, and OC88.
Although I remember working on problems that had to do with counting in two different ways, and
the principle of inclusion exclusion, I think none of them made it to my portfolio. However, all
other strategies, tactics and tools above have at least one solution.
I am very fond of geometry, which is definitely reflected here. Nevertheless, I had the most fun
solving problems related to graph theory, and generating functions. Furthermore, congruence and
divisibility have always been challenging to me so I am proud that I got some of those in as well.
Besides all this, there are a few solutions in which I listed "None" for the tactics. Most of these
solutions were solved by either drawing a diagram or finding a pattern through observation. Many
of them were also proved with induction or contradiction, but I am not sure if that means there is
a correlation.
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1 IC 7
This solution was submitted only once.
Comments were received on the week of October 3rd.
That same week it was given a C3, along with a challenge, I did not complete the challenge.

Strategies Used

• Get your hands dirty- check each possibility

• Formulate intermediate goals- find the count for each possibility individually

Tactics Used

• Invariance- the sum up to 20 never changes.

Tools Used

• Pascal’s triangle and binomial theorem- couting using choose.

Question: How many ways are there to express 20 as a sum of 1’s and 2’s where the
order counts?

This problem is easily illustrated by the following table:

number of 2’s in sum 0 1 2 3 4 5 6 7 8 9 10
number of 1’s in sum 20 18 16 14 12 10 8 6 4 2 0
total elements to sum 20 19 18 17 16 15 14 13 12 11 10
choose where to position the 2’s

(
20
0

) (
19
1

) (
18
2

) (
17
3

) (
16
4

) (
15
5

) (
14
6

) (
13
7

) (
12
8

) (
11
9

) (
10
10

)
number of ways to position the 2’s 1 19 153 680 1820 3003 3003 1716 495 55 1

Total number of ways to express 20 as a sum of 1’s and 2’s: 1+ 19+ 153+ 680+ 1820+ 3003+
3003 + 1716 + 495 + 55 + 1 = 10945
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2 IC 8
This solution was submitted only once.
Comments were received on the week of October 3rd.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- get each of the segments of the path separately.

Tactics Used

• Find and exploit symmetries- shortest distances of each of the points to the circle are the
same.

Tools Used

• Geometry- Made a diagram of circle to find shortest path.

Question: In the xy-plane, what is the length of the shortest path from (0, 0) to (12, 16)
that does not go inside the circle (x− 6)2 + (y − 8)2 = 25?

First notice that the straight line that passes through the origin, (0, 0), and the center of the
circle, (6, 8), also passes through the point (12, 16), and the equation of this line is y = 4

3x. Using
this information and the equation of the circle we can know that the points where this line intersects
the circle are (3, 4) and (9, 12). (For more clariry see attatched diagram).

Now, We can create the shortest path desired by drawing two tangents of the circle: one pass-
ing through the origin and touching the circle at point a, and the other passing through (12, 16)
and touching the circle at point b. Then, the path consists of the straight line from the origin to a,
followed by the arc along the circle from a to b, and then the straight line from b to (12, 16).

To find the dimensions of this path we will use the triangle with vertices at the origin, the center
of the circle, and point a. Notice that this triangle is congruent to that with vertices at (12, 16),
the center of the circle, and point b, so the distance between the origin and a is the same as the
distance between b and (12, 16). Namely, this distance is 5

√
3 (found with trigonometry).

As to the length of the arc from a to b, from the triangle mentioned above we know that the
angle of the arc from (3, 4) to a equals the angle of the arc from b to (9, 12) equals π

3 and because
they both lie on the same line as the angle of the arc from a to b, we know that this angle must
also be π

3 , so the length of the arc must be 5π
3 .

Therefore the length of the path we are looking at is 5
√
3+ 5π

3 +5
√
3 = 10

√
3+ 5π

3 , and this is the
shortest length possible.
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3 OC 7
This solution was submitted only once.
Comments were received on the week of October 3rd.
That same week it was given a C3.

Strategies Used

• Generalization- generalized to a sequence of k elements to find a solution for a sequence of 15
elements.

• Get your hands dirty- before finding the pattern I hade to write many 1s and 0s in my
notebook.

Tactics Used

• None of those listed in the portfolio template.

Tools Used

• Recurrence relations- Fibonacci.

Question: A sequence a1a2...an of 0’s and 1’s is called 1-separated if for no i is aiai+1 = 11,
in other words, no two consecutive symbols are 1. Determine the number of 1-
separated sequences of length 15.

To solve this problem we notice that each 1-separated sequence of length k can start with ei-
ther a 1 or a 0. If it starts with a 1, the next element of the sequence (if any) is necessarily 0, and
the next k − 2 elements in the sequence (if any) can be any of the 1-separated sequences of length
k − 2. In the other hand if the length k sequence starts with a 0, the next k − 1 elements in the
sequence (if any) can be any of the 1-separated sequences of length k − 1.
Knowing this we can come up with a recursive rule. Starting with k = 1, there are two 1-separated
sequences of length 1, namely 1 and 0. Now for k = 2 there are three 1-separated sequences of
length 2, namely 00, 01, and 10. Next, for k = 3 a 1-separated sequence could start with 0 followed
by all 1-separated sequences of length 2 (so there are 3 options here), or it could start with 10
followed by all the 1-separated sequences of length 1 (so there are 2 options here). If we add all the
options we get that there are 3+ 2 = 5 1-separated sequences of length 3 (000, 100, 001, 101, 010).
Using the same process we will find that the number of 1-separated sequences for k = 4 is the ones
starting with 0 followed by all options of k = 3 plus the ones starting with 10 followed by all the
options of k = 2, thus there are 5 + 3 = 8 1-separated sequences of length 4.
If we continue following this pattern we will soon find that there are 5 + 8 = 13 1-separated se-
quences for k = 5, 8 + 13 = 21 1-separated sequences for k = 6, 13 + 21 = 34 for k = 7 and so
on... They are the Fibonacci numbers!! If we look at them closely we can notice that the number of
1-separated sequences of length k is always the (k+3)th Fibonacci number (when the 1st Fibonacci
number is taken to be 0).
Therefore the number of 1-separated sequences of length 15 is equal to the 18th Fibonacci number,
1597.
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4 IC16
This solution was submitted only once.
Comments were received on the week of October 10th.
That same week it was given a C3.

Strategies Used

• Relax conditions- make it a 2D problem instead of a 3D problem.

Tactics Used

• None of those found in the portfolio template.

Tools Used

• Geometry- hypothenuse of a triangle.

Question: A bug sits on one corner of a unit cube, and wishes to crawl to the diago-
nally opposite corner. The bug can’t fly, so he has to stay on the surface of the cube.
What is the length of its shortest path?

If we unfold the cube into a flat cross (see diagram below), then we will realize the the short-
est path the bug can take is across the "straight line" formed be the hypothenuse of a right triangle
whose legs are 1 and 2 units long. Thus, the shortest path =

√
12 + 22 =

√
5.
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5 OC15
This solution was submitted once on the week of October 10th.
Comments were received on the week of October 10th.
It was submitted for a second time on Novemver 4th.
Comments were received on December 2nd. It did not get a C3 but I have done the changes
suggested.

Strategies Used

• Wishful thinking- adding zero creatively.

Tactics Used

• None of those listed in the portfolio template.

Tools Used

• Primes and divisibility- divisibility by 6.

Use induction to prove that 7n − 1 is divisible by 6 for every natural number n.

Base case: n = 1, 71 − 1 = 6 and 6 | 6.

Induction Hypothesis: Assume 6|(7k − 1) for some k.

Inductive Step: Show 6|(7k+1 − 1). To do this we re-write 7k+1 − 1 as 7(7k − 1) + 7 − 1, then
because 6 | 7(7k−1) by the Induction Hypothesis, and 6 | 7−1 by base case, we can conclude that,
6|(7k+1 − 1) which is what we wanted to show.
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6 IC18
This solution was submitted once on the week of October 10th.
Comments were received on the week of October 10th.
It was submitted for a second time on Novemver 4th.
Comments were received on December 2nd. In those comments it received a C3.

Strategies Used

• Find a penultimate step- if we show that for each partition into to sets exactly one satisfies
the conditions we will be done.

Tactics Used

• Find and exploit symmetries- of the partitions of the set into two sets.

Tools Used

• Partitions and bijection- found a bijection between the partitions into two sets and the sets
with the characteristics we want.

How many subsets of the set {1, 2, . . . , 30} have the property that the sum of the
elements of the subset is greater than 232?

First notice that the sum of all the elements of the set A = {1, 2, . . . , 30} is 30(30+1)
2 = 465,

also notice that 465
2 = 232.5 which is almost the same as 232. Thus, we could conjecture that half

of the subsets of A have the property that the sum of their elements is strictly greater than 232.
To show our conjecture is true, consider all the possible partitions of A into two disjoint sets B and
C such that B ∪ C = A. Furthermore, note that there exist 1

22
30 = 229 such partitions, which is

exactly half of all the possible subsets of A. This means that if we can show that exactly one of the
subsets in each of the possible partitions of A has a sum strictly greater than 232, we will be done.
Now, we know that the sum of all the elements in A = B ∪ C is 465 in all cases, and we have the
following two possibilities:

• The sum of all the elements in B is strictly greater than 232. Then the sum of all elements in
C should be strictly less than 232, because if it was more, the total sum would be more than
465.

• The sum of all elements in B is strictly less than 232. Then the sum of all elements in B′

must be strictly greater than 232 because if not the total sum would be less than 465.

Hence, we have shown that exactly one set in each of the possible partitions of A has a sum that is
strictly more than 232. Which is what we wanted to show.
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7 IC33
This solution was submitted only once.
Comments were received on the week of October 17th.
That same week it was given a C3.

Strategies Used

• Find a penultimate step- cut the hexagon into six pieces of equal size.

Tactics Used

• Find and exploit symmetries- in the hexagon to find six equilateral triangles.

• Pigeon-hole principle- 7 points and 6 slots.

Tools Used

• Geometry- hexagon, and equlateral tirangles.

Question: Seven points are placed inside a regular hexagon with side length 1. Show
that at least two points are at most distance one unit apart.

If we connect opposite vertices in the regular hexagon with three straigt lines (passing through
the center) we will end up with six triangular slices. Furthermore, all of these triangles will be
equilateral triangles with side length 1.
By the pidgeonhole principle two of the seven points inside of the hexagon will fall within the area
of the same triangle. Thus, even if they are in opposite vertices of the triangle, their distance cannot
be more than 1.
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8 IC37
This solution was submitted only once.
Comments were received on the week of October 17th.
That same week it was given a C3.

Strategies Used

• Generalization- Showing for all even shows for 0.

Tactics Used

• Invariance principle- The number of heads up is always odd.

Tools Used

• None of those listed in the portfolio template.

Question: Seven quarters are initially all heads up. On a single move you can choose
any four and turn them over (change heads to tails and tails to heads). Is it possible
to obtain all tails up after a sequence of such moves?

The answer to this question is NO. It is impossible to have all tails up after any sequence of
moves. In other words, it is impossible to have 0 heads up at any moment. Now, notice that 0 is an
even number, thus, if we can show that it is impossible to ever have any even number of heads up
at any given stage, we will have shown what we want. This in turn means that it suffices to prove
that, after any number of moves, there will always be an odd number of heads up. We can show
this by induction as follows.
Base 1: initially there are 7 heads up, 7 is odd.
Base 2: after the initial position of 7 heads up, the only possible move is to turn four heads into
tails, this results in 3 heads and 4 tails. 3 is odd.
Induction hypothesis: at any given stage n, there is an odd number of heads face up, that is 7,
5, 3 or 1. Note that this also means that there must be an even number of tails: 0, 2, 4 and 6
respectively.
Inductive step: Given the induction hypothesis, stage n + 1 also has an odd number of heads.
Consider the cases:

• Stage n has 7 heads: Only option is to turn four heads and zero tails, result: 5 heads. Odd.

• Stage n has 5 heads: We can turn 4 heads 0 tails, results in 1 head. Turn 3 heads 1 tail,
results in 3 heads. Turn 2 heads 2 tails, results in 5 heads. All odd.

• Stage n has 3 heads: We can turn 3 heads 1 tail, results in 1 head. Turn 2 heads 2 tails,
results in 3 heads. Turn 1 head 3 tails, results in 5 heads. All odd.

• Stage n has 1 head: We can turn 1 head 3 tails, results 3 heads. Turn 0 heads and 4 tails
results in 5 heads. Both odd.

Thus, any way we look at it stage n + 1 will result in an odd number of heads, and by induction
this means that there can never be an even number of heads, so we can never 0 heads up, which is
the same as saying we can never get all tails up.
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9 IC42
This solution was submitted only once. In addition, I presented this solution in class.
Comments were received on the week of October 17th.
That same week it was given a C3.

Strategies Used

• Wishful thinking- recast problem into a graph and considering smaller graph at the end.

Tactics Used

• Pigeon-hole principle- each vertex must have at least some number of edges of the same color.

Tools Used

• Graph theory- reformulate problem as a graph and look at coloring of edges.

Question: For each pair of people in a group of 17, exactly one of the following is true:
"they are strangers", "they are friends", "they are enemies". Prove that there must
be a trio all of whom are either mutual strangers, mutual friends, or mutual enemies.

For this problem let us visualize the party as a complete graph, where we have 17 vertices represent-
ing the people at the party joined by colored edges determining their relationships. In particular,
lets say that an edge between two people is red if they are enemies, blue if they are friends, and
green if they have never met.
Now, we are trying to prove that there must be at least one triangle in the graph described above
such that its three edges are either all red, all green, or all blue.

Given that this is a complete graph, we know that each vertex has degree 16, furthermore, by
the pidgeonhole principle we know that any given vertex has at least 6 edges of the same color.
Now, let us consider one of the vertices, a. Without loss of generality let us say that a has at least
6 red edges, and that these edges are connected to vertices b, c, d, e, f , and g. If any two of these
vertices, say b and c, are connected by a red edge, we will have a triangle a − b − c that is all red
and we would be done.

On the other hand, if there are no red triangles containing a, then the complete sub-graph formed
by vertices b, c, d, e, f , and g must have only green and blue edges. So to prove our original state-
ment it suffices to prove that a complete graph with 6 vertices and 2-colored edges will always have
a triangle in which all edges are the same color.

To do so we proceed in a similar way as before. Each vertex in our sub-graph has degree 5,
and there are 2 colors, thus, by the pidgeonhole principle at least 3 edges of any given vertex are
the same color. Consider again without loss of generality, that vertex b has 3 blue edges, connecting
it to vertices c, d and e. If any pair of these edges, say c and d is connected by a bue edge, we have
a blue triangle b − c − d so we are done. Otherwise c, d and e are all connected by green edges,
forming a green triangle c− d− e so we are also done.
Hence, there exists a trio in our 17 people party all of whom are either mutual friends, mutual
enemies, or mutual strangers.
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10 OC32
This solution was submitted only once.
Comments were received on the week of October 17th.
That same week it was given a C3.

Strategies Used

• Wishful thinking- proof by contradiction always involves some wishful thinking.

Tactics Used

• Invariance principle- the sum of the degrees of the vertices in a graph is always even.

Tools Used

• Graph theory- reformulate problem as graph and look at degrees of vertices.

Question: A large house contains a television set in each room with an odd number
of doors. There is only one entrance to the house. Show that it is always possible to
enter the house and get to a room with television set.

If we picture the rooms in the house as vertices of a connected graph, and the doors between
them as its edges, then we will have a graph with one vertex for each room plus another vertex of
degree 1 representing the outside of the house.
Now, to show that it is always possible to enter the house and get to a room with a TV set, is
suffices to show that at least one of the vertices in the graph representing a room has an odd degree.
To do so, we will use contradiction. Let us assume that no vertex in the graph, besides the outside
vertex (which must be degree 1), has an odd degree. That is, assume that all the vertices in the
graph representing rooms have an even degree. Then, the sum of the degrees of all such vertices
must also be even, and if we add the remaining outside vertex of degree one, we will have that the
sum of the degrees of all the vertices in the graph is odd.
However, we know that the sum of the degrees of the vertices in a graph is always 2 times the total
number of edges, in other words, the sum of the degrees is always even. But above we said that
this same sum was odd, so we have reached a contradiction.
Therefore there must be at least one room in the house with an odd number of doors, and because
the graph is connected there is always a way to get to a room with a TV set.
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11 IC53
This solution was submitted only once.
Comments were received on the week of October 24th.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- prove each of the equations to prove triangles are similar.

Tactics Used

• Find and exploit symmetries- notice that the differences on each side are the same to find
equality.

Tools Used

• Complex numbers- reformulating problem in complex numbers makes it simpler.

• Geometry- definition fo similar triangles.

Question: Let A,B,C be three non-collinear points in the plane and M a point in the
plane such that it doesn’t lie on any of the lines AB,AC,BC. Prove that the centroids
of the triangles, MAB,MAC,MBC form a triangle similar to ABC.

Let A,B,C and M be represented by the complex numbers a1+a2i, b1+ b2i, c1+ c2i and m1+m2i
respectively. Furthermore, let A′, B′ and C ′ be the centroids of the triangles BCM , ACM and
ABM respectively. Then, we can say that:

A′ =
B + C +M

3
=
b1 + c1 +m1

3
+
b2 + c2 +m2

3
i

B′ =
A+ C +M

3
=
a1 + c1 +m1

3
+
a2 + c2 +m2

3
i

C ′ =
A+B + C

3
=
a1 + b1 +m1

3
+
a2 + b2 +m2

3
i

Now, our goal is to show that triangles ABC and A′B′C ′ are similar triangles. To do so, we must
show that

|AB|
|AC|

=
|A′B′|
|A′C ′|

|AB|
|BC|

=
|A′B′|
|B′C ′|

|BC|
|AC|

=
|B′C ′|
|A′C ′|

We will start by proving the first of these equations. Using the information above, we can express
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|AB|/|AC| =
√
(a1 − b1)2 + (a2 − b2)2√
(a1 − c1)2 + (a2 − c2)2

and

|A′B′|/|A′C ′| =

√
( b1−a13 )2 + ( b2−a23 )2√
( c1−a13 )2 + ( c2−a23 )2

Now, if we square both sides of the equation and multiply both sides by 9
9 we will get the simplified

equation

(a1 − b1)2 + (a2 − b2)2

(a1 − c1)2 + (a2 − c2)2
=

(b1 − a1)2 + (b2 − a2)2

(c1 − a1)2 + (c2 − a2)2

By observation we can notice that each of the differences on the left hand side of the equation
correspond in magnitude with those in the right hand side of the equation, so by squaring them we
will obtain the same positive numbers, and thus the ratios are equivalent. It suffices to say that
equations

|AB|
|BC|

=
|A′B′|
|B′C ′|

|BC|
|AC|

=
|B′C ′|
|A′C ′|

are proved in a similar way. Therefore the triangles ABC and A′B′C ′ are similar triangles.

17



12 IC54
This solution was submitted only once.
Comments were received on the week of October 24th.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- find the sum of coefficients, find the desired pairs of terms, etc.

Tactics Used

• Find and exploit symmetries- in the binomial expansion.

Tools Used

• Generating functions- to generate desired coefficients.

• Pascals triangle and the binomial theorem- that’s all the question is.

Question: Prove that for any positive integer n:(
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
To solve this let us consider the generating function (x+1)n(x+1)n = (x+1)2n. By the binomial
theorem we know that the expansion of (x+ 1)n is(

n

0

)
1 +

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n− 1

)
xn−1 +

(
n

n

)
xn

and we know that this expansion squared must equal (x + 1)2n. Furthermore, we know that the
coefficient of xn in the expansion of (x + 1)2n must be

(
2n
n

)
which is exactly the number we are

interested in. Thus, if we add all the coefficients of xn in the multiplication (x+1)n(x+1)n (when
both binomials are expanded), we know that it must equal

(
2n
n

)
.

This all means that we need to show that the sum of all the coefficients of xn in the multiplication
(x+ 1)n(x+ 1)n (when both binomials are expanded) is the same as(

n

0

)2

+

(
n

1

)2

+ · · ·+
(

n

n− 1

)2

+

(
n

n

)2

Now, to get xn we need to have a multiplication of terms that multiplies xa times xb such that
0 ≤ a, b ≤ n and a + b = n. Therefore, if we have the term x0 with coefficient

(
n
0

)
it must be

multiplied by the term xn with coefficient
(
n
n

)
, if we have the term x1 with coefficient

(
n
1

)
it must

be multiplied by the term xn−1 with coefficient
(
n
n−1
)
, and so on. In general, if we have the term

xk with coefficient
(
n
k

)
it must be multiplied by the term xn−k with coefficient

(
n

n−k
)
(so the new

coefficient would be
(
n
k

)(
n

n−k
)
).
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Next, let us recall that a property of the binomial coefficients is that
(
n
k

)
=
(
n

n−k
)
for any n ∈ Z

and any 0 ≤ k ≤ n. So it is possible to re-write(
n

k

)(
n

n− k

)
=

(
n

k

)(
n

k

)
=

(
n

k

)2

From this it follows that the sum of all the coefficients of xn in the multiplication (x+ 1)n(x+ 1)n

(when both binomials are expanded) is the same as(
n

0

)(
n

n

)
+

(
n

1

)(
n

n− 1

)
+ · · ·+

(
n

n− 1

)(
n

1

)
+

(
n

n

)(
n

0

)
=

(
n

0

)(
n

0

)
+

(
n

1

)(
n

1

)
+ · · ·+

(
n

n− 1

)(
n

n− 1

)
+

(
n

n

)(
n

n

)
=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(

n

n− 1

)2

+

(
n

n

)2

which is what we wanted to show.
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13 OC41
This solution was submitted only once.
Comments were received on the week of October 24th.
That same week it was given a C3.

Strategies Used

• Get your hands dirty- performing the multiplications on a table.

Tactics Used

• Extremal principle- look at the smallest number we need and discard other ones to make
computation faster.

Tools Used

• Generating functions- the whole solution depends on finding the correct one.

Question: A participant in a contest is rated on a scale of 1 to 7 by each of 4 judges.
To be a finalist a participant must score at least 24. Find the number of ways the
judges can rate a participant so as to become a finalist.

For this problem we know each of the 4 judges has 7 options of scores he or she can give. We
could imagine that to give a score, each of the judges has to pick one term out of the polynomial
x7 + x6 + x5 + x4 + x3 + x2 + x with an exponent matching the score they want to give, then the
multiplication of those terms would be the total score of the participant. Then we can use the
generating function f(x) = (x7 + x6 + x5 + x4 + x3 + x2 + x)4 to know how many possible ways
there are for a participant to get a certain score by looking at the coefficient of the exponent we
are interested in. For example, if we want to know how many possible ways a participant could get
17 points, we would look at the coefficient of x17 in f(x).
For a participant to be a finalist they have to score 24 or more points. So to know in how many
ways a finalist score can happen, we need to add the coefficients of the terms x28, x27, x26, x25 and
x24 in f(x).
To find these coefficients consider the function g(x) such that g(x)2 = f(x), then we know that

g(x) = (x7 + x6 + x5 + x4 + x3 + x2 + x)2

and after some computation (see tables attatched) we get that

g(x) = x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 6x7 + 5x6 + 4x5 + 3x4 + 2x3 + x2 + x

Knowing this, we can now compute the first few terms of g(x)2 = f(x) (see tables attatched). More
specifically, the terms of f(x) we care about are x28 + 4x27 + 10x26 + 20x25 + 35x24 + . . . and the
number we are looking for is 1 + 4+ 10 + 20 + 35 = 70 ways in which a participant could get 24 or
more points in the contest.
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14 IC83
This solution was submitted only once.
Comments were received on the week of October 31st.
That same week it was given a C3.

Strategies Used

• Wishful thinking: imagine that the claim is true and try to find evidence either way.

Tactics Used

• Pigeon-hole principle- two out of three things must be either 1 or -1.

Tools Used

• Factor tactic- look at the properties of the factors of a function.

• Polynomials- properties of linear equations.

Question: Let a, b, c be distinct integers. Can the polynomial f(x) = (x−a)(x−b)(x−c)−1
be factored f(x) into the product of two polynomials of positive degree and integer
coefficients?

In short, the answer is no. We can prove this by contradiction. Let us assume that in fact there is a
pair of functions g(x) and h(x) such that f(x) = g(x)h(x) and (x−a)(x− b)(x− c) = g(x)h(x)+1.
From this it follows that

g(a)h(a) = −1

g(b)h(b) = −1

g(c)h(c) = −1

(because a, b and c are zeros of (x− a)(x− b)(x− c)). By our assumption we know that the coeffi-
cients of both g(x) and h(x) are integers, thus, the only way to get -1 as a result in any of the above
multiplications, is by multiplying 1 times -1. That is, if g(a) = −1, then h(a) = 1 and viceversa,
and the same applies for b and c. Furthermore, by the pidgeonhole principle we know that out of
g(a), g(b), and g(c) at least two must have the same value. The same applies for h(a), h(b) and
h(c).
Now, because the exponents must be positive, we know that to get a polynomial of degree 3 such
as f(x), it must be that one of the functions g(x) and h(x) must be quadratic, and the other must
be linear. Without loss of generality lets say that h(x) is the linear one. We know that a linear
function must have a different y value for each distict vallue of x, we also know that a, b, and c are
distinct by definition. But we just stated that at least two out of h(a), h(b) and h(c) have the same
value (either 1 or -1). Hence we have reached a contradition, from which it follows that there is no
pair of functions g(x) and h(x) such that their product equals f(x).
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15 IC89
This solution was submitted only once.
Comments were received on the week of October 31st.
That same week it was given a C3.

Strategies Used

• Find a penultimate step- try to find a way to use x2 + y2 ≥ 2xy.

Tactics Used

• Find and exploit symmetries- to get to the penultimate step.

Tools Used

• Inequalities- it is all about inequalities.

Question: Prove for all real numbers x, y, z that x2 + y2 + z2 ≥ xy + yz + zx

Notice that because the square of any real number is always positive, we can say that

(x− y)2 ≥ 0 =⇒ x2 − 2xy + y2 ≥ 0 =⇒ x2 + y2 ≥ 2xy

Similarly
(x− z)2 ≥ 0 =⇒ x2 + z2 ≥ 2xz

and
(y − z)2 ≥ 0 =⇒ y2 + z2 ≥ 2yz

Furthermore, if we add all the left sides and all the right sides of these inequalities we will get that

x2 + y2 + x2 + z2 + y2 + z2 ≥ 2xy + 2xz + 2yz

2x2 + 2y2 + 2z2 ≥ 2xy + 2xz + 2yz

Thus,
x2 + y2 + z2 ≥ xy + xz + yz

Which is what we wanted to show.

22



16 IC76
This solution was submitted only once.
Comments were received on the week of October 31st.
That same week it was given a C3.

Strategies Used

• Get your hands dirty- compute the first few terms of the sequence to get a conjecture.

• Formulate intermediate goals- prove for all even and for all odd separately.

Tactics Used

• None of those listed in the portfolio template.

Tools Used

• Arithmetic and geometric sequences and series- at the end it turns out we are dealing with a
geometric sequence.

• Recurrence relations- the initial formula is a recurrence relation.

Question: The sequence a0, a1, a2, . . . satisfies the equation

am+n + am−n =
1

2
(a2m + a2n)

for all non-negarive integers m,n with m ≥ n. If a1 = 1 determine an.

Starting with our initial knowledge of the sequence, we can set m = 1 and n = 1 then

a2 + a0 =
1

2
(a2 + a2) =

2a2
2

= a2 =⇒ a0 = 0

Then we can use this information and set m = 1 and n = 0 to find that

a1 + a1 =
1

2
(a2 + a0)

2(1) =
a2 + 0

2

4 = a2

Following a similar process we can then use m = 2 and n = 0 to find a4 = 16. m = 2, n = 1 to find
a3 = 9, and so on. With this we soon come to the conjecture that an = n2 for any non-negative
integer n. We can prove this by induction:
Base cases: a0 = 0, 02 = 0. a1 = 1, 12 = 1. a2 = 4, 22 = 4. a3 = 9, 32 = 9.
Inductive hypothesis: assume an = n2 for all non-negative n up to some n = k.
Inductive step: Show that the induction hypothesis implies ak+2 = (k+2)2. Then our base case of
0 will imply all the even values of n and our base case of 1 will imply all the odd values of n. We
can prove this by cases:
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• Case 1: k is even:
In this case we can set m = k

2 + 1 and n = k
2 − 1. Then m+ n = k, m− n = 2, 2m = k + 2

and 2n = k − 2. We know that all these values (except for k + 2) are less than or equal to k.
Thus

ak + a2 =
1

2
(ak+2 + ak−2)

k2 + 4 =
ak+2 + (k − 2)2

2

2k2 + 8− (k − 2)2 = ak+2

2k2 + 8− k2 + 4k − 4 = k2 + 4k + 4 = (k + 2)2 = ak+2

which is what we wanted to show, and proves that an = n2 for all even n.

• Case 2: k is odd:
In this case we can let m = k+3

2 and n = k+1
2 . Then m+ n = k + 2, m− n = 1, 2m = k + 3

and 2n = k + 1. Notice that k + 3 and k + 1 are both even, so by case 1 above we know that
ak+3 = (k + 3)2 and ak+1 = (k + 1)2. We also know a1 = 1 be base case, thus:

ak+2 + 1 =
(k + 3)2 + (k + 1)2

2

ak+2 =
(k + 3)2 + (k + 1)2 − 2

2
=

2k2 + 8k + 8

2
= k2 + 4k + 4 = (k + 2)2

Which is what we wanted to show, and proves that an = n2 for all odd n.
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17 IC72
This solution was submitted only once.
Comments were received on the week of October 31st.
That same week it was given a C3.

Strategies Used

• Find a penultimate step- try to find a sum for which a lot of terms cancel out.

Tactics Used

• Find and exploit symmetries- to find terms that cancel out.

Tools Used

• Factor tactic- to get an easy to telescope sum.

Question: Find a formula for
1

1 · 2 · 3
+

1

1 · 2 · 3
+ · · ·+ 1

n(n+ 1)(n+ 2)

For this answer we will use telescoping. Notice that the sum above can be expressed as
n∑
k=1

1

k(k + 1)(k + 2)

furthermore, the fraction in the sum can be decomposed in such a way that :
n∑
k=1

1

k(k + 1)(k + 2)
=

n∑
k=1

1

2

( 1

k(k + 1)
− 1

(k + 1)(k + 2)

)
and because 1

2 is just a constant we can pull it out and expand the sum to see that:

1

2

n∑
k=1

( 1

k(k + 1)
− 1

(k + 1)(k + 2)

)
=

1

2

(( 1

1(2)
− 1

2(3)

)
+
( 1

2(3)
− 1

3(4)

)
+
( 1

3(4)
− 1

4(5)

)
+ · · ·+

( 1

n(n+ 1)
− 1

(n+ 1)(n+ 2)

))
With this we can easily see that a a lot of terms will cancel by substraction:
(Note that this is not the actual sum, we omitted the 1

2 to focus on the cancelation of terms, also
known as telescoping):
1

1(2)
+
(
− 1

2(3)
+

1

2(3)

)
+
(
− 1

3(4)
+

1

3(4)

)
+
(
− 1

4(5)
+

1

4(5)

)
+· · ·+

(
− 1

(n+ 1)(n+ 2)

)
=

1

1(2)
− 1

(n+ 1)(n+ 2)

Therefore,
n∑
k=1

1

k(k + 1)(k + 2)
=

1

2

n∑
k=1

( 1

k(k + 1)
− 1

(k + 1)(k + 2)

)
=

1

2

( 1

1(2)
− 1

(n+ 1)(n+ 2)

)
=

1

4
− 1

2(n+ 1)(n+ 2)
=

2n2 + 6n

8n2 + 24n+ 16

which is the formula we were looking for.
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18 IC92 (P)
This solution was submitted only once.
Comments were received on the week of November 7.
The comments said that id I fixed a minor detail, it would be C3.

Strategies Used

• Get your hands dirty- find the first few examples to come up with a conjecture.

Tactics Used

• Invariance principle- the difference between any two summands is always either 0 or 1.

Tools Used

• Primes and divisibility- the division algorithm is a core element of the proof.

Question: Let n be a fixed positive integer. How many ways are there to write n as a
sum of positive integers, n = a1 + a2 + · · ·+ ak, with k an arbitrary positive integer and
a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1?

Following the guidelines above we can do some experimentation to find that there is

• one way to write 1: 1,

• two ways to write 2: 2, 1+1,

• three ways to write 3: 3, 2+1, 1+1+1,

• four ways to write 4: 4, 2+2, 2+1+1, 1+1+1+1,

• five ways to write 5: 5, 3+2, 2+2+1, 2+1+1+1, 1+1+1+1+1

and so on. We soon come to the conjecture that, following the guidelines above, there are n ways
to write n.
To prove this, we can express n as the following sum:

n = a+ a+ · · ·+ a+ (a+ 1) + (a+ 1) + · · ·+ (a+ 1)

Then we can say that we have:

• k terms in total, where 1 ≤ k ≤ n. Notice this range for k is true because we need to have at
least one term, and all terms have to be integers so the maximum number of terms appears
when we have n 1’s.

• r terms of value (a+1), and k− r terms of value a, where 0 ≤ r ≤ k because we need to have
0 or more a terms.

(continues on next page)
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With this, we can express the sum above as n = ak + r. Now, let us restate that all numbers
n, a, and k are defined to be positive integers and r is a non-negative integer. Then we can invoke
the division algorithm, which states that for any pair of positive integers n and k where n ≥ k,
there exist unique non-negative integers a and r with r ≤ k such that n = ak + r which is exactly
what we have above.
Thus, if we take a fixed n we know that for each possible number of terms k there is just one choice
of a and r that determine a unique way to express n in terms of a and (a + 1). Moreover, there
exist exactly n possible k’s so there are exactly n unique ways to express n following the guidelines
of the question.
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19 IC99
This solution was submitted only once.
Comments were received on the week of November 7.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- find a desired coefficient in a generating function.

Tactics Used

• Find and exploit symmetries to know which exponents will get too big to be considered.

Tools Used

• Generating functions- to find the number of ways to choose the variables.

• Diophantine equations- find all integral solutions to a problem..

Question: How many solutions in natural numbers are there to the equation a+b+c+d =
12 where a and b are odd?

First of all, notice that because a, b, c, and d must all be natural numbers, the maximum any
of them can be is the number 9 (so that 9 + 1 + 1 + 1 = 12). With this we have that a and b can
be any number from the set {1, 3, 5, 7, 9} (because they must be odd), while c and d can be any
number from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Moreover, we must choose the four numbers so that their sum is equal to 12. This is equivalent to
saying that we must choose one term from the polynomial (x+x3 +x5 +x7 +x9) (for a), one term
from (x+ x3 + x5 + x7 + x9) (for b), one term from (x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9) (for
c), and another one from (x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9) (for d), such that the sum of
the exponents of all four terms is equal to 12.
Furthermore, we can find how many ways there are to get a sum of exponents equal to 12 by simply
looking at the coefficient of x12 in the generating function

(x+ x3 + x5 + x7 + x9)2(x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)2

Notice that when we expand each of the squares to get a multiplication of two polynomials, the
term with the smallest exponent in both cases will be x2. Because we are looking for exponents
that add up to 12, any term with an exponent greater than 10 is of no interest to us. Therefore we
have that the multiplication above is equal to

(x2 + 2x4 + 3x6 + 4x8 + 5x10 + . . . )(x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 7x8 + 8x9 + 9x10 + . . . )

(To see the complete work on how I got these expansions look at the attatched tables). Now, from
above we can easily see that the terms that will multiply to get an exponent of x12 are:

x2(9x10) + 2x4(7x8) + 3x6(5x6) + 4x8(3x4) + 5x10(x2) =

9x12 + 14x12 + 15x12 + 12x12 + 5x12 =

55x12

Hence, there are 55 possible natural number solutions to the equation a+ b+ c+ d = 12.
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20 Zeitz 1.3.14 (P)
I found this problem on the textbook and asked for permission to use it in one of my submissions.
This solution was submitted once in November 7 but no comments were given back. It was sub-
mitted again by email around November 9, and an email response around November 11 confirmed
it was C3.

Strategies Used

• Wishful thinking- looking at what each individual term is less than to find a pattern.

Tactics Used

• None of those listed in the portfolio template.

Tools Used:

• Arithmetic and geometric sequences and series- this is an arithmetic series.

• Inequalities- question is about inequalities and they are used to find a contradiction.

Question: Let an be a sequence of positive real numbers such that an ≤ a2n + a2n+1 for
all n. Prove that

∑∞
n=1 an diverges.

Notice that by the properties described above,

• a1 ≤ a2 + a3,

• a2 ≤ a4 + a5,

• a3 ≤ a6 + a7,

• a4 ≤ a8 + a9, and so on.

Therefore we can conclude that overall:
∞∑
n=1

an ≤
∞∑
n=2

an =⇒ a1 +

∞∑
n=2

an ≤
∞∑
n=2

an

Now, let us assume the contrary of what we are trying to prove, that is, let us assume that
∑∞
n=1 an

converges. Then it must be that
∑∞
n=2 an also converges, so we can express it as

∑∞
n=2 an = S,

S ∈ R. Then we can rewrite the above inequality as:

a1 + S ≤ S =⇒ a1 ≤ 0

However, our initial premise is that all terms an are positive real numbers, so we have reached a
contradiction.
Hence, our assumption is wrong, and the sum

∑∞
n=1 an diverges.
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21 IC121
This solution was submitted only once.
Comments were received on the week of November 14.
That same week it was given a C3 with a suggestion, I don’t remember if I did any changes.

Strategies Used

• Formulate intermediate goals- split the problem into two cases.

Tactics Used

• Find and exploit symmetries- each summand is symmetric with respect to n/2.

Tools Used

• Primes and divisibility- finding GCD of a pair of numbers to show they are relatively prime.

• Congruence- consider cases of congruence mod 4.

Question: Show that any natural number n > 7 can be expressed as a sum of two
relatively prime numbers both greater than 1.
We will solve this problem considering the following two cases:

• Case 1: n is odd: In this case let us recall the rule that states that any two consecutive
numbers are relatively prime. Because n is odd we know that bn2 c and d

n
2 e are consecutive

numbers and hence, relatively prime. We also know that bn2 c+ d
n
2 e = n so we have found the

two relatively prime numbers that we were looking for.

• Case 2: n is even: In this case we need to consider two more subcases, namely:

– Case A: n ≡ 0 mod 4: In this case n
2 will be even so n

2 − 1 and n
2 + 1 will be odd.

Our claim is that n
2 − 1 + n

2 + 1 = n is the sum that we are looking for. Let k = n
2 − 1

and k + 2 = n
2 + 1. We need to show that for any odd k, k and k + 2 are relatively

prime. That is, GCD(k, k+2) = 1 so we have to show that they have no common prime
divisors.
Now because the two numbers are odd, we know neither of them is divisible by 2.
Furthermore, for any other prime number p > 2 if p | k then the next smallest number
after k that p divides is k + p but p > 2 so k + p > k + 2 =⇒ p - k + 2. Similarly if
p | k + 2 the previous biggest number that p divides is k + 2− p < k =⇒ p - k.
So n

2 − 1 and n
2 + 1 are relatively prime.

– Case B: n ≡ 2 mod 4: In this case n
2 will be odd so n

2 − 2 and n
2 +2 will be odd. Then,

in a similar way as above we must show that for any odd k, GCD(k, k+4) = 1, i.e. that
they have no common prime divisors. Once again because they are both odd, 2 is not a
common divisor.
Next if we take p = 3, on the one hand if p | k then p | k + 3 and p | k + 6 but p - k + 4.
On the other hand if p | k + 4 then p | k + 1 and p | k − 2 but p - k. Furthermore, any
other prime p > 3 will follow a similar pattern as in case A so GCD(k, k + 4) = 1 and
n
2 − 2 + n

2 + 2 are relatively prime.

Therefore, in all cases a natural number n > 7 can be expressed as a sum of two relatively prime
numbers.
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22 IC118
This solution was submitted only once.
Comments were received on the week of November 14.
That same week it was given a C3.

Strategies Used

• Get your hands dirty- before coming up with the recursive relations I had to draw many 3×n
rectangles to find a pattern.

Tactics Used

• Invariance principle- There are only four states each of which yield to the one of the same
four states.

Tools Used

• Recurrence relations- two of them.

Question: How many ways are there to tile a 3× n rectangle with 2× 1 tiles?
To solve this problem we will come up with a recursive function that finds an = the number of
tilings of a 3×n rectangle using 2× 1 tiles. To do this, we will use a helper recursive function that
finds bn = the number of tilings of a 3× n rectangle with one square removed using 2× 1 tiles. To
come up with these functions, we will first consider the following four base cases:

• The rectangle for n = 1 has 0 possible tilings. That is a1 = 0.

• The rectangle for n = 2 has 3 possible tilings. That is a2 = 3.

• The rectangle for n = 1 with one square removed has 1 possible tilling. That is b1 = 1.

• The rectangle for n = 2 with one square removed has 0 possible tilings. That is b2 = 0.

Now, keeping these base cases in mind, we can take any 3× n rectangle with n > 2. Then to find
an we have to count all the possibilities in the following two cases:

• Case 1: There are three vertical tiles touching the nth row. In this case, we can "remove" the
two last rows, and count all the possible tilings for a 3× n− 2 rectangle, that is an−2.

• Case 2: There is one vertical tile and one horizontal tile touching the nth row. In this case,
we can also "remove" the row and the square covered by the tiles. Notice that there are two
ways to do this, one when the vertical tile is on the first column, and one when the vertical
tile is on the third column. Therefore we have to count twice the number of possible tilings
of a 3× n− 1 rectangle with one square removed, that is 2bn−1.

From the cases above, we can come up with the recursive formula an = an−2 + 2bn−1. However,
it still remains to define a recursive function for bn. In order to do this, consider the following two
more cases of a 3× n rectangle with one square removed:
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• Case 1: There is a horizontal tile covering the two "orphan" squares (that is, the two squares
in the row from which the one square was removed). In this case we can "remove" those two
squares, and count the number of tilings of a 3× n− 1 rectangle. That is an−1.

• Case 2: There are two vertical tiles covering the two "orphan" squares. In this case we can
"remove" those four squares, which will yield a single "orphan" square, this square can only
have a vertical tile, which when removed will result in a new 3 × n − 2 rectangle with one
square removed. That is bn−2.

Hence we have that bn = an−1 + bn−2 which is what we were missing.
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23 OC78
This solution was submitted only once.
Comments were received on the week of November 14.
It did NOT receive a C3, however, I have done the corrections suggested in the comments.

Strategies Used

• Formulate intermediate goals- find GCD of certain Fibonacci numbers.

Tactics Used

• Extreme principle- find the largest p can be.

Tools Used

• Recurrence relations- Fibonacci.

• Primes and divisibility- To show two numbers are relatively prime.

Question: Prove that consecutive Fibonacci numbers are always relatively prime.

Let the nth Fibonacci number be denoted by fn, then to show that consecutive Fibonacci numbers
are always relatively prime we must show that GCD(fn, fn+1) = 1 is true for all n > 1. To do this
we will use proof by induction on n.
First, our base case will be when n = 1 then fn = 1 and fn+1 = 1, and we know GCD(1, 1) = 1.
Next, for our induction hypothesis we will assume that GCD(fk, fk+1) = 1 is true for some n = k.
Then, for the inductive step we need to show that for n = k+1, GCD(fk+1, fk+2) = 1 is also true.
Notice this is equivalent to showing that GCD(fk+1, fk + fk+1) = 1. That is, we want to show for
any integer p that if both p | fk+1 and p | fk + fk+1 then the largest possible value of p is 1.
Now, if p | fk+1 and p | fk + fk+1, it follows that p | fk. Moreover, from out induction hypothesis
we have that GCD(fk, fk+1) = 1, therefore, the largest p can ever be is 1, which is what we wanted
to show.
Hence, all consecutive Fibonacci numbers are relatively prime.
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24 IC122
This solution was submitted only once.
Comments were received on the week of November 14.
That same week it was given a C3.

Strategies Used

• Formulate a penultimate step- suffices to show not congruent to 0 or 1 mod 4.

Tactics Used

• Invariance principle- a perfect square is always congruent 0 or 1 mod 4.

Tools Used

• Congruence- all the proof is based on congruence.

Question: Let a be a natural number. Prove that a2+(a+1)2+(a+2)2+(a+3)2+(a+4)2

is never a perfect square.
To do this first notice that in general, for any integer k one of the following four cases must be true:

• k ≡ 0 mod 4 =⇒ k2 ≡ 0 mod 4

• k ≡ 1 mod 4 =⇒ k2 ≡ 1 mod 4

• k ≡ 2 mod 4 =⇒ k2 ≡ 4 mod 4 =⇒ k2 ≡ 0 mod 4

• k ≡ 3 mod 4 =⇒ k2 ≡ 9 mod 4 =⇒ k2 ≡ 1 mod 4

Hence, for any integer k, the perfect square k2 must be congruent to either 0 mod 4 or 1 mod 4.
So if we want to show that some number m is NOT a perfect square, it suffices to show that m
is NOT congruent 0 mod 4 nor 1 mod 4. Furthermore, notice that consecutive perfect squares
alternate between being congruent 0 mod 4 and being congruent 1 mod 4.
Now, let a2 + (a + 1)2 + (a + 2)2 + (a + 3)2 + (a + 4)2 = m. We want to show that m is never
a perfect square, therefore we must show that in all cases either m ≡ 2 mod 4 or m ≡ 3 mod 4.
Next, because all the terms in the sum above are perfect squares, we can consider the following two
cases:

• a2 ≡ 0 mod 4. This implies all of the following:

– (a+ 1)2 ≡ 1 mod 4,
– (a+ 2)2 ≡ 0 mod 4,
– (a+ 3)2 ≡ 1 mod 4, and
– (a+ 4)2 ≡ 0 mod 4. Hence
– m ≡ (0 + 1 + 0 + 1 + 0) mod 4 = 2 mod 4.

• a2 ≡ 1 mod 4. Following a similar pattern as above, this implies that m ≡ (1+0+1+0+1)
mod 4 = 3 mod 4

So overall, in all cases m is either congruent with 2 mod 4 or with 3 mod 4, therefore m can never
be a perfect square, which is what we wanted to show.
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25 IC131 (P)
This solution was submitted only once. I am aware it was presented in class but I turned it in that
same day before seeing the presentation.
Comments were received on the week of November 21st.
That same week it was given a C3, along with a suggestion, however I did not make any further
changes.

Strategies Used

• Get your hands dirty- tried a lot of values of n until we found a pattern for the necessary
condition.

Tactics Used

• Invariance principle- the sum of all integers up to n must always be divisible by 3.

Tools Used

• Partitions and bijection- we are looking for partitions in the problem.

• Primes and divisibility- the divisibility of the sum of the elements in the set is important to
solve the problem.

• Congruence- congruence mod 6 is used.

Question: For what values of n can {1, 2, . . . , n} be partitioned into three subsets with
equal sums?

First of all notice that if we partition a set A = {1, 2, . . . , n} into 3 subsets of equal sums, each of
these sums must be exactly ∑

a∈A a

3

Then, because all elements in A are integers, it follows that the only way in which this can be
possible is if

3
∣∣∣∑
a∈A

a

Furthermore, n = 1, 2 and 3 are too small to be able to satisfy the initial condition, and 1+2+3+4 =
10 is not divisible by 3, therefore it must also be true that n ≥ 5. Below we can see the first four
instances of this pattern:

(continues next page)

35



• n = 5, 1 + 2 + 3 + 4 + 5 = 15, 15/3 = 5, the partition to three subsets with sum equal to 5 is
{5}, {4, 1}, {3, 2}

• n = 6, 15 + 6 = 21, 21/3 = 7, the partition to three subsets with sum equal to 7 is
{6, 1}, {5, 2}, {4, 3}

• n = 8, 21 + 7 + 8 = 36, 36/3 = 12, the partition to three subsets with sum equal to 12 is
{8, 4}, {7, 5}, {6, 3, 2, 1}

• n = 9, 36 + 9 = 45, 45/3 = 15, the partition to three subsets with sum equal to 15 is
{9, 5, 1}, {8, 7}, {6, 4, 3, 2}

Taking the four values of n above, notice that 5 ≡ 5 mod 6, 6 ≡ 0 mod 6, 8 ≡ 2 mod 6 and 9 ≡ 3
mod 6. Our claim is that in all cases where the desired partition is possible, n must be congruent
to 0, 2, 3 or 5 mod 6. We will prove this by induction:
Take the four examples above as base cases. Then assume that for some k, the set {1, 2, . . . , k}
can be partitioned into three subsets with equal sums. Now we can show that this must also be
the case for k + 6. Consider the set {1, 2, . . . , k + 6}, and partition it in two sets {1, 2, . . . , k}
and {k + 1, k + 2, k + 3, k + 4, k + 5, k + 6}. By our induction hypothesis we know that the
first set can be partitioned into three sets such that the sum of the elements of each of them is
equal to some number b. Moreover, we can easily partition the second set into the three subsets
{k + 1, k + 6}, {k + 2, k + 5}, {k + 3, k + 4}, such that the sum of each of the subsets is equal to
2k + 7. Hence, the whole set {1, 2, . . . , k + 6} can be partitioned into three sets with equal sum,
namely 2k + 7 + b.

Now, the induction above has shown how for all n ≡ 0, 2, 3, 5 mod 6 it is possible to obtain
the desired partition. However, it remains to show that when n ≡ 1, 4 mod 6 it is NOT possible
to get such a partition. To do so we will use contradiction: First consider some n ≡ 1 mod 6, and
notice that this means that n2 ≡ 1 mod 6 and n+n2 ≡ 2 mod 6. In a similar way, consider some
n ≡ 4 mod 6 =⇒ n2 + n ≡ 20 mod 6 = 2 mod 6 also.
Next assume that the set {1, 2, . . . , n} can be partitioned into three sets of equal sum b ∈ Z, and
that

3b =

n∑
a=1

a =
n(n+ 1)

2
=⇒

n2 + n

2
= 3b =⇒ n2 + n = 6b =⇒ n2 + n ≡ 0 mod 6

However, we had already established that n2 + n ≡ 2 mod 6 so we have a contradiction. So it is
impossible to get a partition of three sets of equal sum any time that n ≡ 1, 4 mod 6 which is what
we wanted to show.
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26 IC139 (P)
This solution was submitted only once.
Comments were received on the week of November 21st.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- look at quadrilateral OABC and attempt to find r there.

Tactics Used

• Find and exploit symmetries- of the isoceles triangles as well as of the quadrilateral.

Tools Used

• Geometry- Triangles, angles, and cosine rule.

Question: A hexagon inscribed in a circle has three consecutive sides of length a and
three consecutive sides of length b. Determine the radius of the circle in terms of a and b

(For this paragraph see fig. 1) Call the center of the circle O and its radius r, then draw six
radii connecting O to each of the vertices of the hexagon. Notice that this yields to six isoceles
triangles with two sides length r, and the other side either length a or length b. Furthermore, by
SSS all the triangles with a side a are congruent, so each of their angles at O measure α◦, and
each of their angles not at O measure ((180− α)/2)◦. Similarly all triangles with a side b are also
congruent, so each of their angles at O measure β◦, and each of their angles not at O measure
((180− β)/2)◦.
(For this paragraph see fig. 2) Next, notice that all the angles at O must add up to 360◦, so we
have the equation 3α + 3β = 360 =⇒ α + β = 120. Now label three consecutive vertices of the
hexagon A B and C such that |AB| = a and |BC| = b, and take the quadrilateral OABC. Then
notice that angle AOC = α+ β = 120. Furthermore we can find that angle ABC =

θ =
180− α

2
+

180− β
2

=
180− α+ 180− β

2
=

360− α− β
2

=⇒

−θ = α+ β − 360

2
=

120− 360

2
=
−240
2

= −120 =⇒

θ = 120

So AOC = ABC = 120, |AB| = a, |BC| = b, |OA| = |OB| = r. Moreover, it is useful to know
that cos(120) = −1/2. Finally, draw a line AC and call |AC| = c, then we can use the cosine rule
to write the following two equations:

c2 = a2 + b2 − 2ab cos(120) and c2 = r2 + r2 − 2r2 cos(120)

=⇒ a2 + b2 − 2ab cos(120) = 2r2 − 2r2 cos(120)

=⇒ a2 + b2 + ab = 2r2(1 +
1

2
) =⇒ a2 + b2 + ab = 3r2

=⇒ r =

√
a2 + b2 + ab

3
Which is the equation we were looking for.
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27 IC143
This solution was submitted only once.
Comments were received on the week of November 21st.
It did NOT obtain a C3 but I have made the corrections in the comments.

Strategies Used

• Wishful thinking- imagine a triangle with the desired characteristics and try to see if it is
possible that it exists.

Tactics Used

• None of those listed in the portfolio template.

Tools Used

• Inequalities- triangle inequality.

• Geometry- area of a triangle.

Question: Is it possible for a triangle to have altitudes equal to 6, 10 and 20.

The answer to this question is no. To prove this, assume there is a triangle with sides a, b,
and c and altitudes 6, 10 and 20 respectively. Then the area of the triangle is

A =
6a

2
=

10b

2
=

20c

2
=⇒

3a = 10b = 20c

Now, if we express b and c in terms of a we have that
3a = 10b =⇒ 3a

10 = b and
3a = 20c =⇒ 3a

20 = c.
Furthermore we have that b+ c = 3a

10 + 3a
20 = 6a+3a

20 = 9a
20 .

Next, notice that 20a ≥ 9a because a is positive. Then a ≥ 9a
20 =⇒ a ≥ b + c. However, the

triangle inequality states that a < b+ c, therefore we have reached a contradiction.
Hence, there cannot be a triangle with altitudes 6, 10 and 20 which is what we wanted to show.
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28 OC88
This solution was submitted only once.
Comments were received on the week of November 21st.
That same week it was given a C3.

Strategies Used

• Specialization- start by looking at the example where b = 2.

• Get your hands dirty- plug all possible values of b in a calculator to see which ones are valid.

Tactics Used

• Extremal principle- look at the smallest possible solution.

Tools Used

• Polynomials- solving quadratic equations.

• Diophantine equations- looking for integer solutions.

Question: Find all pairs of nonnegative integers (x, y) such that x3 + 8x2 − 6x+ 8 = y3.

First of all, notice that 8x2 − 6x + 8 is positive for all non-negative x because 8x2 grows faster
than 6x. This means that x3 ≤ y3 =⇒ x ≤ y. Therefore, we can say that y = x+ b where b ∈ N
is the difference between x and y, and y3 = x3 + 3x2b+ 3xb2 + b3.
Now, looking at the initial equation we can set y3 =

x3 + 8x2 − 6x+ 8 = x3 + 3x2b+ 3xb2 + b3 =⇒

8x2 − 6x+ 8− 3x2b− 3xb2 − b3 = 0

= (8− 3b)x2 − (6 + 3b2)x+ 8− b3 = 0

Next, for each value of b that yields to a real, integer solution of the quadratic equation above, we
will have that (x, y) = (x, x+ b) is one of the pairs we are looking for. For example, when b = 2 we
have

(8− 3b)x2 − (6 + 3b2)x+ 8− b3 = 0

= (8− 6)x2 − (6 + 12)x+ 8− 8 = 0

= 2x2 − 18x = 0

And we can use the quadratic formula to get:

x =
18±

√
182

2(2)

So the solutions are

• x = 0 and then x+ b = 0 + 2 = 2

• x = 9 and then x+ b = 9 + 2 = 11
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which means the pairs (0, 2) and (9, 11) satisfy x3 + 8x2 − 6x+ 8 = y3:

03 + 8(0)2 − 6(0) + 8 = y3 =⇒ y = 2

and
93 + 8(9)2 − 6(9) + 8 = y3 =⇒ 729 + 648− 54 + 8 = y3 =⇒

1331 = y3 =⇒ y = 11

Now this is just the instance where b = 2, it remains to determine for which values of b, the
quadratic equation above has real and integer solutions. Notice that for the solution of a quadratic
equation to be real, its discriminant must be positive. The discriminant of our quadratic equation
is (6+3b2)2−4(8−3b)(8−b3). If we plug this in Wolfram Alpha we can find that the integer values
of b for which this determinant is positive lie between 2 and 11 (inclusive), furthermore, again with
the help of a calculator we can see that for any b > 2 the determinant is not an integer. Thus, the
only real, integer solutions of our quadratic formula are the ones that we already found, 0 and 9.
Hence, the only pairs (x, y) for which x3 + 8x2 − 6x+ 8 = y3 are (0.2) and (9, 11).
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29 IC145
This solution was submitted only once.
Comments were received on the week of November 30.
That same week it was given a C3.

Strategies Used

• Formulate intermediate goals- get the area of the smaller triangles.

Tactics Used

• Find and exploit symmetries- sum of areas and total area have many similar terms that cancel
out.

Tools Used

• Geometry- area of a triangle.

Let P be an arbitrary point in the interior of an equilateral triangle. Prove that
the sum of the distances of P to the three sides is equal to the altitude of the triangle.

Let the vertices of the triangle be A, B, and C, also let D, E and F be the intersections of
the lines passing through P and perpendicular to AB, BC, and CA respectively, finally let s =
|AB| = |BC| = |CA|.
Now, we are trying to show that |PD|+ |PE|+ |PF | = h where h is the altitude of the triangle. To
prove this we draw three more lines PA, PB, and PC. Then consider the triangle ABP and notice
that it has altitude |PD| and base |AB| = s so its area is s|PD|/2. Similarly, the area of triangles
BCP and CAP are s|PE|/2 and s|PF |/2 respectively. Notice that the sum of these areas must be
the area of the whole triangle, thus

s|PD|/2 + s|PE|/2 + s|PF |/2 = sh/2 =

s

2
(|PD|+ |PE|+ |PF |) = s

2
(h) =⇒

|PD|+ |PE|+ |PF | = h

which is what we wanted to show.
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30 IC151
This solution was submitted only once.
Comments were received on the week of November 30.
That same week it was given a C3.

Strategies Used

• Find a penultimate step- the value of h found in the previous proof is the penultimate step.

Tactics Used

• Invariance principle- h is always the same with respect to s.

Tools Used

• Geometry- height of a triangle.

Let triangle ABC be an equilateral triangle and P an arbitrary point within the
triangle. Perpendiculars PD, PE and PF are drawn to the three sides of the triangle.
Show that no matter where P is chosen

|PD|+ |PE|+ |PF |
|AB|+ |BC|+ |CA|

=
1

2
√
3

Let s = |AB| = |BC| = |CA| and h be the altitude of the triangle. Then by the proof immediately
above (IC145) what we are trying to show is equivalent to showing that

h

3s
=

1

2
√
3

Now, by definition the altitude of an equilateral triangle is

h =
s
√
3

2
=⇒ h

3s
=
s
√
3

2
÷ 3s =

s
√
3

6s
=

√
3

6

√
3√
3
=

3

6
√
3
=

1

2
√
3

Which is what we wanted to show.
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